Remote control can be implemented by SSH login and running commands inside Red Pitaya device.
Commands for FPGA registers control
SSH remote clients enable the possibility of remote script control trough any lab/calc/programming framework.
Inside Red Pitaya, commands are stored in folder:
/opt/redpitaya/www/apps/lock-in+pid/py
This are some commands already implemented:
lock.py # Read/Write lock-in FPGA parameters (most of the instruments)
osc.py # Read/Write oscilloscope FPGA parameters
osc_get_ch.py # Oscilloscope Channel acquisition
osc_trig.py # Trigger configuration
data_dump.py # Raw data streaming
The three first commands allows to make most of the standard procedures, like instruments configuration, data acquisition and oscilloscope control.
For example, to read the Oscilloscope A channel value, just run:
./lock.py oscA
To read the pidB_kp
value, an then change it, run:
./lock.py pidB_kp
pidB_kp : 0
./lock.py pidB_kp 20
pidB_kp : 20
./lock.py pidB_kp
pidB_kp : 20
With no params, lock.py
and osc.py
shows you all the registers available and its actual value.
./lock.py
oscA_sw : 4
oscB_sw : 2
osc_ctrl : 3
trig_sw : 0
out1_sw : 0
out2_sw : 12
slow_out1_sw : 0
slow_out2_sw : 0
slow_out3_sw : 0
slow_out4_sw : 0
lock_control : 1148
lock_feedback : 1148
lock_trig_val : 0
lock_trig_time : 0
lock_trig_sw : 0
rl_error_threshold : 0
rl_signal_sw : 0
rl_signal_threshold: 0
rl_config : 0
rl_state : 0
sf_jumpA : 0
sf_jumpB : 0
sf_config : 0
signal_sw : 0
signal_i : 6734
sg_amp1 : 0
sg_amp2 : 0
sg_amp3 : 0
sg_amp_sq : 0
lpf_F1 : 32
lpf_F2 : 32
lpf_F3 : 32
lpf_sq : 32
error_sw : 0
error_offset : 0
error : 0
error_mean : 0
error_std : 0
gen_mod_phase : 0
gen_mod_phase_sq : 0
gen_mod_hp : 0
gen_mod_sqp : 0
ramp_A : 3344
ramp_B : 3298
ramp_step : 1000
ramp_low_lim : 2000
ramp_hig_lim : 7000
ramp_reset : 0
ramp_enable : 1
ramp_direction : 0
ramp_B_factor : 4096
sin_ref : 596
cos_ref : 4060
cos_1f : 4012
cos_2f : -2464
cos_3f : -3476
sq_ref_b : 1
sq_quad_b : 0
sq_phas_b : 1
sq_ref : 4096
sq_quad : 4096
sq_phas : 4096
in1 : 6744
in2 : 6796
out1 : 0
out2 : 2319
slow_out1 : 0
slow_out2 : 0
slow_out3 : 0
slow_out4 : 0
oscA : 2087
oscB : 6790
X_28 : 13751
Y_28 : -16574
F1_28 : -13671
F2_28 : 3780
F3_28 : -1797
sqX_28 : 27602875
sqY_28 : -27606127
sqF_28 : -27347185
cnt_clk : 0
cnt_clk2 : 0
read_ctrl : 0
pidA_sw : 0
pidA_PSR : 3
pidA_ISR : 8
pidA_DSR : 0
pidA_SAT : 13
pidA_sp : 0
pidA_kp : 0
pidA_ki : 0
pidA_kd : 0
pidA_in : 0
pidA_out : 0
pidA_ctrl : 0
ctrl_A : 3034
pidB_sw : 0
pidB_PSR : 3
pidB_ISR : 8
pidB_DSR : 0
pidB_SAT : 13
pidB_sp : 0
pidB_kp : 0
pidB_ki : 0
pidB_kd : 0
pidB_in : 0
pidB_out : 0
pidB_ctrl : 0
ctrl_B : 3616
aux_A : 0
aux_B : 0
./osc.py
conf : 5
TrgSrc : 1
ChAth : 4013
ChBth : 11384
TrgDelay : 16377
Dec : 8192
CurWpt : 14132
TrgWpt : 7607
ChAHys : 63
ChBHys : 63
AvgEn : 0
PreTrgCnt: 1
ChAEqFil1: 32147
ChAEqFil2: 276423
ChAEqFil3: 14260634
ChAEqFil4: 9830
ChBEqFil1: 32147
ChBEqFil2: 276423
ChBEqFil3: 14260634
ChBEqFil4: 9830
Remote control through Python scripts
On github.com/marceluda/rp_lock-in_pid/tree/master/resources/remote_control
you can find a Python tool, based on paramiko, for remote control of Lock-in+PID App.
The example file shows how to use it:
from numpy import *
import numpy as np
from matplotlib import pyplot as plt
from time import sleep,time
# PATH of control_hugo.py file
import sys
#sys.path.append('/home/lolo/Dropbox/Doctorado/pylib')
sys.path.append(r'C:\Users\Nestor\Desktop\lolo\lib')
from control_hugo import red_pitaya_control,red_pitaya_app
AppName = 'lock-in+pid'
host = '192.168.1.103'
port = 22 # default port
trigger_type = 6 # 6 is externa trigger
filename = 'test.npz'
rp=red_pitaya_app(AppName=AppName,host=host,port=port,filename=filename,password='root')
# reduce log noise on Windows platform
import logging
logging.basicConfig()
logging.getLogger("paramiko").setLevel(logging.WARNING)
rp.verbose = False
#%% Set params
rp.lock.ramp_step = 1000
rp.lock.ramp_low_lim = 0
rp.lock.ramp_hig_lim = 8191
rp.lock.ramp_enable = 1
rp.lock.out2_sw = 12
rp.lock.oscA_sw = 1
rp.lock.oscB_sw = 2
rp.lock.trig_sw = 8
rp.get_adc_dac_calib()
trigger_type = 6 # 6 es externo, 1 es manual
# Decimation only allows this values: 1,8,64, 1024, 8192, 65536
# The oscilloscope data points will be separated by 2^(dec-1) * 8 ns
dec = 1 # [1,8,64, 1024, 8192, 65536]
rp.osc_trig_fire(trig=trigger_type,dec=dec)
sleep(dec *8e-9*2**14 + 0.2)
rp.get_curv(log='ruido info' )
rp.save()
# Access last acquisition values
ch1_val = mean( rp.data[-1][2]['ch1'])
ch1_err = std( rp.data[-1][2]['ch1'])
ch2_val = mean( rp.data[-1][2]['ch2'])
ch2_err = std( rp.data[-1][2]['ch2'])
ch1_act = (ch1_val + rp.calib_params['FE_CH1_DC_offs'])*float(rp.calib_params['FE_CH1_FS_G_HI'])/2**32*100/8192
ch2_act = (ch2_val + rp.calib_params['FE_CH2_DC_offs'])*float(rp.calib_params['FE_CH2_FS_G_HI'])/2**32*100/8192
# plot last acquisition
rp.plot()
You can run this example with Anaconda Python on Windows or Linux platforms. To install Paramiko, just run in console:
cd $HOME/anaconda/bin
./conda install -c anaconda paramiko